
Suggested Solutions to Midterm Test for MATH4220

March 10, 2016

1. (20 points)

(a) (8 points) Find the general solutions to

ux − 2uy + 2u = 0

(b) (12 points) Solve the problem: {
y∂xu+ 3x2y∂yu = 0

u(x = 0, y) = y2

Find the region in the xy-plane so that the solution is uniquely determined.

Solution:

(a) Method 1:Coordinate Method:
Change variables to

x′ = x− 2y, y′ = −2x− y

Hence ux − 2uy + 2u = 5ux′ + 2u = 0. Thus the solution is u(x′, y′) = f(y′)e−
2
5
x′ , with f an

arbitrary function of one variable. Therefore, the general solutions are

u(x, y) = f(−2x− y)e−
2
5
(x−2y)

where f is an arbitrary function.

Method 2: Geometric Method
The corresponding characteristic curves are

dx

1
=
dy

−2

that is, y = −2x+ C where C is an arbitrary constant.Then

d

dx
u(x,−2x+ C) = ux(x,−2x+ C)− 2u(x,−2x+ C) = −2u(x,−2x+ C)

Hence u(x,−2x+ C) = f(C)e−2x, where f is an arbitrary function. Therefore,

u(x, y) = f(2x+ y)e−2x

where f is an arbitrary function.

(b) The characteristic curves are
dy

3x2y
=
dx

y

that is, y = x3 + C where C is an arbitrary constant. Then

d

dx
u(x, x3 + C) = ux + 3x2uy = 0
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Hence u(x, x3 + C) = f(C) where f is an arbitrary function. Thus

u(x, y) = f(y − x3)

Besides, the auxiliary condition gives that y2 = u(x = 0, y) = f(y). Hence, the solution is

u(x, y) = (y − x3)2

Note that when y = 0 the equation vanishes, thus the characteristic curves break down when
y = 0, therefore the solution is uniquely determined on {(x, y) : y > 0, y > x3} ∪ {(x, y) : y <
0, y < x3} ∪ {(0, 0)} . (Remark: if the solution is continuous, then u is uniquely determined on
the whole plane by the continuity of u).

2. (30 points)

(a) (5 points) State the definition of a well-posed PDE problem.

(b) (5 points) Is the following problem well-posed? Why? ∂2xu+ ∂2yu = 0, x2 + y2 < 1

∂u

∂~n
(x, y) = 0, x2 + y2 = 1, ~n is the unit outnorm of x2 + y2 = 1

(c) (10 points) Verifying that un(x, t) = 1
n sinnxe−n

2t solves the following probem
∂tu = ∂2xu, 0 < x < π, −∞ < t < +∞
u(0, t) = u(π, t) = 0, −∞ < t <∞

u(x, t = 0) =
1

n
sinnx, 0 ≤ x ≤ π

for all positive integer n.

How does the energy change when t→ ±∞ ?

(d) (10 points) Is the following problem
∂tu = ∂2xu, 0 < x < π, t < 0

u(0, t) = u(π, t) = 0, t < 0

u(x, t = 0) = 0, 0 < x < π

well-posed ? Why?

Solution:

(a) A PDE problem is said to be well-posed if the following three properties are satisfied:

Existence: There exists at least one solution u(x, t) satisfying all these conditions.

Uniqueness: There is at most one solution.

Stability: The unique solution u(x, t) depends in a stable manner on the data of the problem.
This means that if the data are changed a little, the corresponding solution changes only a little.

(b) No.
Let u(x, t) = C where C is an arbitrary constant. Then ∂xu = ∂yu = ∂2xu = ∂2yu = 0, hence

∂2xu+ ∂2yu = 0, x2 + y2 < 1

∂u

∂~n
= (∂xu, ∂yu) · (x, y) = 0, x2 + y2 = 1

Therefore, any constant is the solution of the problem. Hence the solution exists but is not
unique.
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(c) After a little simple computations, we have for all positive interger n

∂tun(x, t) = −n sin(nx)e−n
2t

∂xun(x, t) = cos(nx)e−n
2t

∂2xun(x, t) = −n sin(nx)e−n
2t

then ∂tun = −n sin(nx)e−n
2t = ∂2xun, 0 < x < π, −∞ < t <∞. And

un(0, t) = 0, −∞ < t <∞

un(π, t) = 0, −∞ < t <∞

un(x, t = 0) =
1

n
sin(nx), 0 < x < π

hence un is indeed the solution of the problem.
The energy is

E =
1

2

∫ π

0
|un(x, t)|2dx =

1

2n2
e−2n

2t

∫ π

0
sin2(nx)dx =

π

4n2
e−2n

2t

hence E(t)→ 0 as t→ +∞ and E(t)→ +∞ as t→ −∞.

(d) No.

On one hand, u = 0 is a solution of
∂tu = ∂2xu, 0 < x < π, t < 0

u(0, t) = u(π, t) = 0, t < 0

u(x, t = 0) = 0, 0 < x < π

On the other hand, un(x, t) = 1
n sinnxe−n

2t solves the following probem
∂tu = ∂2xu, 0 < x < π, t < 0

u(0, t) = u(π, t) = 0, t < 0

u(x, t = 0) =
1

n
sinnx, 0 ≤ x ≤ π

for all positive integer n by above problem (c).
Note that ∫ π

0
| 1
n

sinnx− 0|2dx =
π

2n2
→ 0 as n→ +∞

However when t < 0,∫ π

0
| 1
n

sin(nx)e−n
2t − 0|2dx =

π

2n2
e−2n

2t → +∞ as n→∞

Hence, when the data u(x, t = 0) changes a little in the sense of L2−norm, the difference of
the solutions in L2−norm tends to infinity. This violates the stability in the sense of L2-norm,
therefore, it is not well-posed.

Remark: consider the stability in uniform sense.

On one hand, max0<x<π | 1n sin(nx)− 0| → 0 as n→∞
On the other hand, when t < 0, max0<x<π | 1n sin(nx)e−n

2t − 0| → +∞ as n→∞
This violates the stability in the uniform sense.
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3. (10 points) Is there a maximum principle for the Cauchy problem for the 1-dimensional wave equa-
tion? Explain why?

Solution:No.

Consider the following Cauchy problem:{
∂2t u− ∂2xu = 0, −∞ < x < +∞, t > 0

u(x, t = 0) = 0, ∂tu(x, t = 0) = sinx, −∞ < x < +∞

And the unique solution is given by d’Alembert formula:

u(x, t) =
1

2
cos(x+ t)− cos(x− t) = − sinx sin t, −∞ < x <∞, t > 0

Then u(x, t) attains its maximum 1 only at the interior points (π2±2nπ, 3π2 +2nπ) or (3π2 ±2nπ, π2 +2nπ)
for n = 0, 1, 2, · · · . However, u(x, t) = 0 on the boundary {(x, t) : t = 0}. Therefore there is no
maximum principle for the Cauchy problem for the 1-dimensitonal wave equation.

Remark: The key is to find an counterexample.

4. (10 points)

(a) (5 points) What is the type of the equation

∂2t u+ ∂2xtu− 2∂2xu = 0 ?

(b) (5 points) Solve the Cauchy problem{
∂2t u− 2∂2xu = 0, −∞ < x < +∞, −∞ < t < +∞
u(x, t = 0) = x2, ∂tu(x, t = 0) = sinx, −∞ < x < +∞

Solution:

(a) Since a11 = 1, a12 = 1
2 , a22 = −2, then a212 − a11a22 = 9

4 > 0, hence it is hyperbolic.

(b) The solution is given by d’Alembert Formula directly:

u(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)] +

1

2c

∫ x+ct

x−ct
ψydy

Here c =
√

2, φ(x) = x2 and ψ(x) sinx. Hence

u(x, t) =
1

2
[(x+ ct)2 + (x− ct)2] +

1

2
√

2

∫ x+ct

x−ct
sin ydy = x2 + 2t2 +

1√
2

sinx sin
√

2t

5. (20 points) Consider the Cauchy problem{
∂tu = ∂2xu, −∞ < x < +∞, t > 0

u(x, t = 0) = φ(x) −∞ < x < +∞

(a) (10 points) Show that any finite energy solution to the Cauchy problem is unique by the energy
method.

(b) (10 points) Find the solution with φ(x) given by

φ(x) =

{
1, if x > 0

0, if x < 0

Solution:
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(a) Soppose u1 and u2 are two finite energy solution to Cauchy problem. Let v(x, t) = u1(x, t) −
u2(x, t), then v(x, t) satisfies the following problem:{

∂tv = ∂2xv, −∞ < x < +∞, t > 0

v(x, t = 0) = 0 −∞ < x < +∞

Multiplying the both sides of ∂tv = ∂2xv by u and taking intergral from −∞ to ∞ with respect
to x, then we have ∫ ∞

−∞
∂tvvdx =

∫ ∞
−∞

∂2xvvdx

Then

L.H.S =
d

dt

∫ ∞
−∞

1

2
v2dx

R.H.S = ∂xvv
∣∣∣∞
−∞
−
∫ ∞
−∞

(∂xv)2dx

Note that u1 and u2 are finite energy solutions, that is,

1

2

∫ ∞
−∞
|u1(x, t)|2dx < +∞, 1

2

∫ ∞
−∞
|u2(x, t)|2dx < +∞

then
1

2

∫ ∞
−∞
|v(x, t)|2dx ≤

∫ ∞
−∞
|u1(x, t)|2 + |u2(x, t)|2dx < +∞

that is, v(x, t) is a finite energy solution which implies that v(x, t)→ 0 as x→ ±∞. Hence

R.H.S = −
∫ ∞
−∞

(∂xv)2dx

Then, we have
d

dt

∫ ∞
−∞

1

2
v2dx = −

∫ ∞
−∞

(∂xv)2dx ≤ 0

and then for t > 0

0 ≤
∫ ∞
−∞

1

2
v2(x, t)dx ≤

∫ ∞
−∞

1

2
v2(x, 0)dx = 0

By the continuity of v, we have v(x, t) ≡ 0, −∞ < x < ∞, t > 0. Thus we have shown that
u1(x, t) ≡ u2(x, t) for −∞ < x <∞, t > 0. Therefore any finite energy solution is unique.

(b) Method 1:Find a solution with the from u(x, t) = U( x√
4t

). Let p = x√
4t

, then U( x√
4t

) satisfies

the following eqution:
U ′′(p) + 2pU ′(p) = 0

Hence U(p) = C1 + C2

∫ p
0 e
−s2ds where C1, C2 are arbitrary constants. That is,

u(x, t) = U(
x√
4t

) = C1 + C2

∫ x√
4t

0
e−s

2
ds

Now use the initial condition, expressed as a limit as follows.

x > 0, 1 = lim
t→0+

U(
x√
4t

) = C1 + C2

∫ +∞

0
e−s

2
ds

x < 0, 0 = lim
t→0+

U(
x√
4t

) = C1 + C2

∫ −∞
0

e−s
2
ds

Note that
∫∞
0 e−s

2
ds =

√
π
2 , we have C1 = 1

2 , C2 = 1√
π

. Therefore,

u(x, t) =
1

2
+

1√
π

∫ x√
4t

0
e−s

2
ds
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Method 2: The solution for the Cauchy problem is given by

u(x, t) =

∫ ∞
−∞

S(x− y, t)φ(y)dy

where S(x, t) is the heat kernel, S(x, t) = 1√
4kπt

e−
x2

4kt . Here, k = 1

φ(x) =

{
1, if x > 0

0, if x < 0

Then,

u(x, t) =

∫ ∞
0

1√
4πt

e−
(x−y)2

4t dy =
1

2
+

1√
π

∫ x√
4t

0
e−s

2
ds.

6. (10 points) Derive the solution formula for the following initial-boundary value problem
∂tu = ∂2xu, 0 < x < +∞, t > 0

u(x, t = 0) = φ(x) 0 < x < +∞
∂xu(x = 0, t) = 0, t > 0

by the method of reflection.

Solution: Use the reflection method, and first consider the following Cauchy Problem:{
∂tv = ∂2xv, 0 < x < +∞, t > 0

v(x, t = 0) = φeven(x) 0 < x < +∞

where φeven(x) is even extension of φ which is given by

φeven(x) =

{
φ(x), if x > 0

φ(−x), if x < 0

Then the unique solution is given by:

v(x, t) =

∫ ∞
−∞

S(x− y, t)φeven(y)dy

And since φeven(x) is even, so is v(x, t) for t > 0,which implies

∂xv(x = 0, t) = 0, t > 0

Set u(x, t) = v(x, t), x > 0 ,then u(x, t) is the unique solution of Neumann Problem on the half-line.
More presicely, x > 0, t > 0

u(x, t) =

∫ ∞
0

S(x− y, t)φ(y)dy +

∫ 0

−∞
S(x− y, t)φ(−y)dy

=

∫ ∞
0

S(x− y, t)φ(y)dy +

∫ ∞
0

S(x+ y, t)φ(y)dy

=
1√

4kπt

∫ ∞
0

[e−
(x−y)2

4kt + e−
(x+y)2

4kt ]φ(y)dy.
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